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General discrete planar models in two dimensions: duality 
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Received 20 August 1979 

Abstract. We consider the most general spin model with nearest-neighbour interactions 
invariant under a global 2, symmetry, in two dimensions. Dual transformations are 
discussed, and the subset of self-dual models is characterised. The phase diagrams for p 3 5 
are particularly rich, containing first-order, second-order and infinite-order phase tran- 
sitions. In particular, the existence of a massless phase similar to the low-temperature phase 
of the X Y  model is established. 

1. Introduction 

Recently, it has been realised that the peculiar properties of the O(2) planar model 
(classical X Y  model) in two dimensions imply an interesting structure for the case in 
which the O(2) symmetry is broken down to that of a Z, subgroup. JosC et a1 (1977) 
showed that 2, perturbations on the O(2) model are irrelevant for a range of 
temperatures below the critical temperature T, of the O(2) model, provided p 2 5. 
Thus, these models should undergo two phase transitions as a function of temperature. 
For T <  Tcl, the 2, symmetry is broken and the correlation length is finite. For 
Tcl < T < Tc2 the symmetry is unbroken and the correlation length is infinite (the 
‘massless’ behaviour characteristic of the low-temperature phase of the O(2) model), 
while for T > Tc2 we have an unbroken phase with short-range order. Elitzur et a1 
(1979) extended these results to the ‘pure’ Z,  case when the Z, perturbations become 
large, and the angular variables become discretised in units of 277/p .  These authors 
considered mainly the Villain (1975) form of the interaction, which lends itself to simple 
duality transformations and Griffiths-type inequalities (Griffiths 1972, Ginibre 1970). 

In this paper we consider the most general form of a ‘pure’ 2, theory (that is, the 
angles are discretised) with nearest-neighbour interactions. Thus, each site i of a square 
lattice is occupied by an angular variable e,, a multiple of 27r/p.  The nearest-neighbour 
interaction V(0,  - 6,) can thus take on [ p / 2 ]  + 1 values$. Since only energy differences 
are relevant, this means that our theory will possess [p/2] paraineters. Fortunately, the 
interesting physical cases probably correspond to p == 6, and so this proliferation is not 
too serious. For these models, it is possible to con‘struct duality transformations which 
are generalisations of the original transformations of Kramers and Wannier (1941) for 
the case p = 2 and of Potts (1952) for the eponymous model, which corresponds to the 
case V(0,  - O j )  cc &,+. These turn out to be nothing more than Fourier transforms in the 

+ Work supported by National Science Foundation. 
$ W e  denote the integral part of a real number a by [ a ] .  

0305-4470/80/041507 +09$01.50 @ 1980 The Institute of Physics 1507 



1508 J L Cardy 

space {x,}, where x,: exp V(2rr lp) .  This linear realisation enables us to make several 
general deductions concerning the nature of self-dual Zp models. In particular, we 
show that there is a [p/4]-dimensional subspace of self-dual models. 

The second half of this paper is devoted to extending the results of Elitzur et a1 
(1 979) on the existence of a massless phase to the case of a general interaction. For 
p 3 5 ,  we find that there is always a [p/2]-dimensional region in which the model is in a 
massless phase. We establish lower bounds on the extent of this region. For the 
purposes of illustration we consider p = 5,6. The case p = 4 is isomorphic to the Ashkin 
and Teller (1943) model. The consequences of this have been explored by Kadanoff 
(1977). 

All that we have to say concerning duality properties applies equally to 2, lattice 
gauge theories in  four dimensions (Elitzur et a! 1979). In fact, the equations are 
identical after replacing ‘site’ by ‘link’ and ‘link’ try ‘plaquette.’ Also, we expect, for 
large enough p ,  to find a region in the parameter space in which the models behave like 
free electrodynamics at large distances. A determination of the critical value of p awaits 
an accurate estimate of the critical temperature of the corresponding O(2) model, 
however. 

Finally, in the appendix, we show that the massless phase also exists for the same 
model defined on a triangular or a honeycomb lattice, and that the condition on p for 
this to occur is probably once again p 3 5. 

2. Duality transformations 

The models we consider are described by a partition function 

2 = tr exp[&j, V(Bi .- O,)] (2.1) 
8, 

where implies a sum over nearest-neighbour pairs. We write 

xr  = exp[ V(2rr lp) l  (2.2) 

so that each possible model (at a given temperature, ,8 = l / k T  being absorbed into the 
definition of V) corresponds to a point in the real projective space {x,} ,  where all points 
A{x,} (A arbitrary) are jdentified. Since xr  has period p it can be Fourier-decomposed. 

(2.3) -1/2 xr = p 1 Zs exp(2 r i r  s/p) 
S 

where Zs also has period p ,  so that the sum over s is over one period of the function. The 
factor p-1’2 is inserted for convenience. (2.3) can be written in a real form (since x,  is an 
even function). 

where 

(2.4) 
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Inserting the Fourier decomposition (2.3) into (2.1), so that a variable s,, = -s,, is 
assigned to each link (ij), it is possible to perform the trace over the e,, which gives zero 
unless the system of constraints 

1 s,j = 0 (mod P )  (2.6) 
I 

is satisfied. This can be done by defining integer variables n, = 0, 1, . . . , ( p  - 1) on the 
sites a of the dual lattice and letting sII = n,  - nb (mod p )  whenever the link (ij) 
intersects the dual link (ab ) .  We end up with a model defined on the dual lattice which 
differs from the original model only in that xr is replaced by & Thus the duality 
transformation is a linear transformation in the projective space {xr}. 

If we repeat the duality transformation we obtain the original model. This is 
expressed by the fact that, with our normalisation, D 2  = 1. 

We now look for self-dual models. These will correspond to eigenvectors of D with 
positive eigenvalues. Clearly all eigenvalues of D must be k l .  Although D is not 
symmetric, because D2 = 1 any generalised eigenvector is also a true eigenvector. Since 
the generalised eigenvectors span the space, it follows that D is diagonalisable. We can 
also calculate the trace: 

Hence the eigenvalue + 1  of D must be ([p/4]+ 1)-fold degenerate. There is, therefore, 
a [p/4]-dimensional linear subspace of self-dual models. 

Two points of this subspace are already known. They are the Potts model, whose 
self-dual point corresponds to 

XJXO = (1 + Jp)-' (2.8) ( r  = 192, . . * 9 [p/21) 

and the Villain form 
CD 

xr = exp[-2v2K(n + r / ~ ) ~ ]  (2.9) 
n = - m  

whose self-dual point lies at K = p / 2 r .  For 4 c p G 7, therefore, the general self-dual 
model is a linear combination of these two models in xr space. 

The parameter spaces xJx0 for the cases p = 4 , 5  and 6 are shown in figures 1 , 2  and 
3 respectively. The restrictions xr 3 0 implied by the existence of a dual model impose 
linear constraints on the X,/XO. Thus the allowed region is bounded by lines (planes) for 
p = 4, 5, (6). Those boundaries which lie within the hypercube 0 s xr/xo G 1 do not 
appear to correspond to phase boundaries-at these points the interactions of the dual 
model merely become imaginary. On the other hand, models with x,/xo> 1 are 
antiferromagnetic in nature and should be in a quite different universality class. We do 
not discuss this further. 

Some observations on figures 1-3 are in order. The case p = 4 is isomorphic to the 
Ashkin-Teller model, as can be seen by making the transformation 

e''] = (s, + io,)/(l + i 1 - I  (2.10) 

where sf, o, = *l are Ising spins defined at each site. In the (xl/xo, xz/xo) plane the 
critical line of the eight vertex model corresponds to the lower half of the self-dual line, 
terminating at the Potts self-dual point. In addition, for x1/x0 = 0, the model reduces to 
an Ising model, since either all 8, = 0 (mod v), or all el = ~ / 2  (mod v). Lin and Wu 
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Figure 1. Parameter space for p = 4. A and A'denote the low- and high-temperature limits, 
respectively. SISz is the self-dual line. Under duality AS1& is mapped into A'SISZ. The 
four-state Potts model corresponds to the line AA', with a transition at P4. P4S2 is the line of 
second-order transitions of the Ashkin-Teller model. In addition there are two lines of 
Ising transitions, originating at P2 and Pi.  The Villain model corresponds to the curved line, 
with a transition at V. 

x1 'XI2 

Figure 2. Parameter space for p = 5. Notation as in figure 1. In this case the phase diagram 
is symmetric about AA'. Shaded area corresponds to the lower bound on the extent of the 
massless phase proven in the text. K and K' illustrate the conjectured approximate location 
of the two Kosterlitz-Thouless transitions. 
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Figure 3. Parameter space for p = 6 .  Notation as in figure 1. The lower bounds on the 
massless region (now three-dimensional) are not shown but they form two mutually dual 
surfaces originating at the points V and V on the Villain curve, which converge and intersect 
in a curve which crosses the self-dual line. There are also (not shown) two surfaces of Ising 
transitions, originating at P2 and Pi ,  and two surfaces of three-state Potts transitions, 
originating at P3 and Pi. 

(1974) have conjectured t_e existence of a line of Ising-like transitions, beginning at the 
Ising point xz/xo = (1 +J2)-* and terminating at the Potts self-dual point. There is-also 
a second line of Ising-like transitions, dual to the first, beginning at x l / x o  = (1 +J2)- ' ,  
xz/xo = 1. This phase structure can be expressed in terms of the order parameters: 

M,, = (eins) (2.11) 

A model for which x 2  < x1 (at a given temperature) undergoes one transition from the 
high-temperature phase in which M I  = M2 = 0 to the low-temperature phase in which 
both are non-zero. On the other hand, models with xz>xl  undergo two successive 
Ising-like transitions, with an intermediate phase in which M I  = 0 and M2 f 0, leaving a 
residual 2, symmetry. 

For p = 5 the phase diagram is symmetric under interchanging x1 and x2. This can be 
seen by making the transformation 6, -$ 20i (mod 27r). Such symmetries will always be 
present whenever the group 2, has a non-trivial automorphism (excluding 8, + -6). 

For p L 5 there is a unique transition along the Potts line (Hintermann et a1 1978) 
which is, moreover, first order (Baxter 1973). On the other hand, Eliztur et a1 (1979) 
have shown that along the Villain line (parametrised by (2.9) and illustrated in figures 
1-3 there are two Kosterlitz-Thouless (1973) transitions for p 2 5. One of the aims of 
the next section will be to gain information on the region between the Potts line and the 
Villain line. 

For p = 6 there are, in addition, at least four other critical surfaces, similar to the 
Ising-like transitions present when p = 4. They originate in the Ising transition at 
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x1 = x2 = 0, x 3 / x 0  = (1 +dT)-’ and the three-state Potts model transition at 
x1 = x 3  = 0, x z / x o  = (1 +J3)- l ,  and their respective dual images. Thus, for suitable 
values of the couplings, the passage from the high-temperature phase to the low- 
temperature phase may occur by a three-state Potts transition followed by an Ising 
transition (with an intermediate phase in which M2 # 0), or the transitions may occur in 
the reverse order, with an intermediate phase characterised by M3 # 0. All of these 
surfaces lie on the other side of the Potts line from the Villain line and, since there is a 
unique transition along the Potts line, they are presumably unconnected with the two 
Kosterlitz-Thouless transitions. 

3. The massless phase 

In order to prove rigorous results for these models in the form of Griffiths inequalities, it 
is first necessary to choose a representation for the interaction which is amenable to the 
known techniques. Two such representations suggest themselves (we restrict ourselves 
to the case p = 5 for clarity): 

x, = exp[K; cos(2m/5) i -K;  cos(4m/5)] (3.1) 

x, = e x p [ - 2 ~ ~ K l ( n l  + r / 5 ) ’ ]  exp[-2rr2K~(n~+2p/5)I. (3.2) 
n l  n2 

For general p ,  there are [p/2] terms in each representation. (3.1) is, of course, 
completely general. However, it is possible to prove Griffiths-type inequalities using 
(3.1) only when K ;  and Kh are both non-negative. On the other hand, (3.2) converges 
only when K1, K2 > 0, a region which is bounded by the Villain line (K2 = 0) and its 
image (K1 = 0) in the Potts line. This region contains that in which the K :  of (3.1) are 
non-negative. Thus (3.2), the ‘generalised Villain representation’, is more useful. 

We begin by summarising tke arguments of Elitzur et al, which establish the 
existence of two phase transitions with an intermediate massless phase transitions with 
an intermediate mass less phase, for the pure Villain form (Kz = 0). 

Consider the correlation function in the Villain Z, model at ‘temperature’ KF1 

g q w ;  Z,(G1 1) 
= (exp(iqO(R)) exp(-iqO(Q)) 

= Z-’ tr,,,,, exp(iq8(R) - O ( 0 ) )  exp[-tKl&,,(Ol - 0, -2.rml,)2] (3.3) 

where Z denotes the partition function. Elitzur et a1 (1979) establish upper and lower 
bounds on this correlation function, in terms of those of the O(2) model, obtained from 
(3.3) by allowing the 8, to be continuous variables, and of the roughening model, 
obtained from (3.3) by dropping the term 2 ~ n ,  (and allowing the 0, to range over all 
multiples of 27r/p from -a to +CO). Thus: 

gq(R; ZdK;’  1) c gq(R, Z,(KF1 )) =z gq(R, roughening) (3.4) 
where the right-hand side is explicitly 

where the ri take all integer values. 
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Now, if KT1 < T,, the critical temperature of the Villain X Y  model, the left-hand 
side is power-behaved as lRI +CO. Similarly, if p2/4,rr2K1 > TR, the critical temperature 
of the roughening model, the latter is in its rough phase and the right-hand side of (3.4) 
goes to zero as lRI -+ a. Now the Villain X Y  and the roughening models are mutually 
dual (JosC et a1 1977), with TR = l/Tc. Thus the 2, correlation function exhibits the 
behaviour characteristic of a massless phase if 

4T2T~/p2<K; '  < ~ / T R .  (3.6) 
These bounds give upper and lower bounds, respectively, for the transition tempera- 
tures into the massless phase. (3.6) only applies, of course, if 

p > 2.irT~. (3.7) 
Thus there will be three phases if p >pc, where pC<2r/TR. Elitzur et a1 estimated 
T,= TR1, but it is possible to obtain an upper bound for TR in terms of the critical 
temperature (21112)~' of the F model (I3 H Swendsen, private communication). So 
pc< v/ln 2 = 4.53, . . . , and there are certainly three phases for p 3 5 .  

We now extend these results into the region K2>0. We consider the same 
correlation function gl(R, K1, Kz) ,  where we have made the dependence on K1 and KZ 
explicit. By arguments very similar to those described by Elitzur et a1 it can be shown 
that 

and so 

gq@, Ki, Kz) 3 gq(R, Ki, 0 )  for Kz > 0.  (3.9) 

K i l  can be regarded as a generalised temperature, and (3.8) expresses the fact that 
decreasing the temperature increases the correlations. The opposite inequality is 

(3.10) 

where (kl, k2) are the parameters of the model dual to that specified by (K1,  K 2 ) .  We 
now define a region in the (xl/xo, xz/xo) plane as follows. From the point K1 = 2111 2, 
K z  = 0 construct the curve K1 = 2 In 2, K2 > 0 until it intersects the self-dual line. 
Similarly construct the dual of this curve. The area enclosed between these two curves 
and the Villain curve then gives a lower bound on the extent of the massless phase, by 
(3.8) and (3.10). Note that the Potts line lies well outside this region. Similar 
considerations hold for arbitrary p ,  but the associated regions are difficult to represent. 
We have checked that there is never any overlap with the Potts line. 

4. Conclusions 

We have established the existence of a massless phase, similar to the low-temperature 
phase of the X Y  model, in the general 2, models for p 2 5 .  If these models are in the 
same universality class as the X Y  model with Z, perturbations analysed by JosC et a1 
(1977) the phase boundaries will correspond to infinite-order Kosterlitz-Thouless-type 
transitions. We have shown that the critical value pc of p above which these two 
transitions occur is less than 4.53 and, according to the analysis of JosC et al, may well be 
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exactly pc = 4. It is very suggestive that this is also the critical value for p at which the 
Potts model transition becomes first order (Baxter 1973). If the same mechanism is 
responsible for both the onset of first-order transitions in the Potts model and the 
splitting of the second-order transition for p = 4 into two Kosterlitz-Thouless tran- 
sitions for p > 4, then it is reasonable to conjecture that when the two infinite-order 
phase boundaries meet on the self-dual line (figure 2) the transition becomes first order, 
this first-order nature persisting all the way up to the Potts line. Thus, a conventional 
second-order transition between the high-temperature and low-temperature phase 
would be forbidden for p 3 5. The system would have to go via a first-order transition, 
two Kosterlitz-Thouless transitions or successive Ising, three-state Potts, or Ashkin- 
Teller-like transitions. At the lower Kosterlitz-Thouless transition, the order 
parameters M,, will fall to zero faster than any power. A simple application of the 
renormalisation group equations of JosC et a1 (1977) leads to the prediction 

(4.1) 

where C is a non-universal constant. 
Finally we mention that the results of this paper can be extended in a straightforward 

manner to models invariant under any finitely-generated Abelian group. No new 
physics emerges. 

M,, a exp(-Cn '/( Tc - T)"') 
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Appendix 

We extend the results on the existence of a massless phase to the triangular and 
honeycomb lattices. It might be thought that the result pc = 4 for the square lattice is 
connected with the spatial Z4 symmetry of that lattice. However, we show that pc is 
close to 4 for the other lattices also. The inequality arguments of 0 3 go through 
independent of the lattice, giving the lower bounds (similar to (3.6)) on the massless 
phase for the Villain form: 

4,rr2TR/p2< K;' < T, (-41) 

PC < ~ T ( T R /  TC)'l2 ('42) 

so that 

where T, and TR are the transition temperatures of the Villain X Y  and the roughening 
models, respectively, for the given lattice. Since the honeycomb (hc) and triangular (t) 
lattices are mutually dual: 

(-43) 

('44) 

In the absence of any rigorous lower bounds on TS and T?, we shall use the estimate 

T : T ~  = T,~'T;  = 1 

so, for both lattices, 
hc -1/2 p,<2rr(T;Tc 1 . 
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provided by the Kosterlitz-Thouless (1 973) criterion. This involves beginning with the 
spin-wave limit of the Villain form: 

r -I 

- ( 1 / 2 T )  ij (ei - e j )2 j  

and going to the continuum limit, which gives a reduced Hamiltonian: 

H = ( x / 2 T )  (VO)’ d2r (A@ I 
where x = J3, 1/J3, and 1 for the triangular, honeycomb and square lattices, respec- 
tively. Now the energy of a vortex is balanced against its entropy, giving the estimate 

T, = 1~x12.  (‘47) 
We expect this to be an upper bound on T, (due to screening by other vortices) so this 
gives pc = 4. 
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